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Abstract The radiative characteristics (spectral effective emissivity, spectral
radiance, and radiance temperature) of blackbody calibration sources widely used
in radiation thermometry are an important subject for advanced computer modeling
by the Monte Carlo method. An algorithm and code for stochastic modeling of the
radiant heat transfer inside cavities has been developed on the basis of the reciproc-
ity principle and backward ray tracing. The importance sampling technique has been
applied to generate the reflected rays according to the surface reflection model that
can be a linear combination of the following primary models: Lambertian, Specular,
and TETRA (a microfacet model of random tetrahedral pits that mimics reflections
from a rough surface). A wide range of axisymmetrical cavities, cylindrical cavities
with an inclined flat bottom, and a rectilinear grooved radiator of polygonal profile
have been implemented. Various conditions of observation can be modeled to compute
appropriate radiation characteristics. A number of different temperature distributions
can be assigned to the same node set on the cavity surface, so several related tasks can
be modeled in a single run. The results obtained for the radiative properties of isother-
mal and non-isothermal non-diffuse blackbodies used for the calibration of infrared
radiation thermometers are presented and discussed.
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1 Introduction

Blackbody sources of nearly Planckian radiation (imperfect blackbodies) are often
used for calibration purposes in radiation thermometry, optical radiometry, heat flux
measurements, and related areas. Typically, such a source is an almost isothermal cav-
ity with a small opening; the characteristics of the output thermal radiation approach
those of a perfect blackbody due to multiple reflections of radiation inside the cavity.
The spectral radiative characteristics of a cavity can be computed with the help of
Planck’s law; the appropriate correction factor is the spectral effective emissivity. The
directional spectral effective emissivity is defined by the equation,

εe(λ, T, ξ ,ω) = Lλ(λ, ξ ,ω)

Lλ,bb(λ, T )
, (1)

where Lλ and Lλ,bb are the spectral radiance (in W ·m−3 · sr−1) for a wavelength λ
of a cavity (possibly non-isothermal) and a perfect blackbody at temperature T , ξ is
the point on the cavity radiating surface, and ω is the direction of observation.

The directional spectral effective emissivity is the primary cavity radiation charac-
teristic; the other types of effective emissivities can be computed by averaging over the
spectral, spatial, and/or angular domains. Generally, the effective emissivity depends
on the cavity geometry, the optical properties of the cavity walls, the temperature
distribution over the radiating surface, and the conditions of observation.

Another important quantity is the radiance temperature TS that is defined as the
perfect blackbody temperature, for which the spectral radiance at the specified wave-
length λ has the same value as for the thermal radiator considered. For an imperfect
blackbody having the spectral effective emissivity εe, the radiance temperature can be
computed as

TS(λ, T, ξ ,ω) = c2

{
λ ln

[
1 + exp

( c2
λT

) − 1

εe(λ, T, ξ ,ω)

]}−1

, (2)

where c2 = 1.438769 × 10−2 m ·K is the 2nd radiation constant.
For a cavity with specular walls, the effective emissivity can be calculated using an

inverse ray tracing procedure, where rays start at the observation point and undergo
multiple reflections from the cavity walls. If the cavity walls are perfectly diffuse
(Lambertian), the effective emissivity can be found by solving the Fredholm integral
equations of the second kind. These methods were reviewed in detail by Bedford in
1988 [1]. However, the reflection from real-world surfaces is neither perfectly diffuse
nor perfectly specular, and these approximations are not always sufficient to compute
the effective emissivity with uncertainties less than several hundredths of a percent,
as required by modern radiometric and pyrometric applications.

In recent decades, the Monte Carlo method has become the most frequently used
tool for effective emissivity modeling [2]. Although the stochastic modeling of an arbi-
trary angular distribution of reflected radiation is possible in principle, the simplest
uniform specular–diffuse model has been employed in most published studies [3–7].
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This is explained not only by the lack of reliable measurements of optical properties
but also by difficulties encountered in the development of modeling algorithms.

Toor and Viskanta [8] modeled the reflection from rough surfaces using Beckmann
[9] theory that gives exact results only for single scattering, i.e., for small incident
angles and sufficiently smooth surfaces. Unfortunately, details of the modeling algo-
rithm were omitted. Almost 30 years later, Tomitani [10] used a similar approach in
combination with the acceptance–rejection method.

Zaworski et al. [11] measured and computed the spatial distribution of radiation
passing through a rectangular gap with a rough wall. The polar and azimuthal
spherical coordinates for the specular lobe were considered as Gaussian variates
counting from the specular direction and with the standard deviations fitted to exper-
imental data. A significant discrepancy between the modeled and measured distribu-
tions was obtained. The authors explained this discrepancy as due to a lack of measured
values of bi-directional reflectance at large incident angles and the imperfection of the
model adopted.

Zhou et al. [12] applied the modified Ward’s model of reflection [13] to Monte
Carlo modeling of the effective emissivity of a silicon wafer. The model employed
requires further improvement because it shows a dependence of directional-
hemispherical reflectance (DHR) on incident angle that contradicts experimental data.

Prokhorov and Hanssen [14] described an algorithm based on microfacet theory to
model the reflection from rough surfaces. The central idea is to randomly perturb the
normal vector to the surface for each incident ray, and to compute the direction of the
specular reflection using this perturbed normal. Multiple reflections are replaced by a
Lambertian component to maintain energy conservation. The proposed model exhibits
experimentally observed effects such as off-specular peaks and increased reflectance
near grazing incidence. Adherence to the reciprocity principle for moderate roughness
is demonstrated via comparison of forward and backward ray-tracing results (residual
discrepancy of several percent).

This article has two main objectives: (i) to describe the state-of-the-art algorithm
and code developed at the National Institute of Standards and Technology for sto-
chastic modeling of the radiant heat transfer inside cavities and (ii) to demonstrate,
by example, that one should take into account the real angular distributions of emit-
ted and reflected radiation to insure accurate and reliable calculations of the radiative
characteristics of blackbody calibration sources.

2 Stochastic Models for Radiation Properties

2.1 Basic Definitions

The radiative properties of a surface are completely described by the spectral
bi-directional reflectance distribution function (BRDF) [15] that can be defined in
two equivalent forms:

f (λ, θi, ϕi, θr, ϕr) = dLλ,r (λ, θr, ϕr)

dEλ,i (λ, θi, ϕi)
= dLλ,r (λ, θr, ϕr)

dLλ,i (λ, θi, ϕi) cos θr
, (3)

123



Int J Thermophys (2007) 28:2128–2144 2131

where λ is the wavelength, Lλ,i is the spectral radiance of the incident beam, Lλ,r is the
spectral radiance of the reflected radiation, Eλ,i is the spectral irradiance (in W ·m−3)
from the incident radiation, and (θi, ϕi) and (θr, ϕr) are the directions of incidence and
observation, respectively, defined by their spherical coordinates.

The BRDF must obey the energy conservation law:

ρ (λ, θi, ϕi ) =
2π∫

ϕr=0

π/2∫
θr=0

f (λ, θi, ϕi, θr, ϕr) sin θr cos θrdθrdϕr ≤ 1, (4)

where ρ (λ, θi, ϕi) is the spectral DHR; and the spectral directional emissivity of an
opaque body is equal to

ε (λ, θi, ϕi) = 1 − ρ (λ, θi, ϕi) . (5)

The BRDF should be consistent with the reciprocity principle;

f (λ, θi, ϕi, θr, ϕr) = f (λ, θr, ϕr, θi, ϕi) . (6)

If the angular distribution of the emitted or reflected radiant intensity is known, it
is possible to construct a simplest stochastic model by generating random rays uni-
formly distributed in a hemisphere and by assigning to each ray a statistical weight
equal to the value of the radiant intensity distribution for this direction. However, such
a model is extremely inefficient from the computational point of view, especially for
distributions with significant non-uniformities. For effective modeling, the stochas-
tic model of BRDF that is incorporated into a Monte Carlo ray tracing algorithm
should provide importance sampling [16], i.e., generating random directions (θr, ϕr)

of reflection from a general population having a probability density function equal to
f (θi, ϕi, θr, ϕr) cos θr.

2.2 Specular BRDF

Specular reflection simulates the reflection from a planar, perfectly smooth, mirror-
like surface. This is a deterministic process that requires no random variate modeling.
If ωi and ωr are unit vectors of incident and reflection directions, respectively, and n
is the normal to the surface, then

ωr = ωi − 2n (ωi · n) . (7)

The BRDF of the specular reflection is expressed by the equation,

fS (λ, θi, ϕi, θr, ϕr) = ρ (λ, θi)
δ (θr − θi) δ (ϕr − ϕi ± π)

sin θr cos θi
, (8)
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where δ is Dirac’s delta-function; ρ (λ, θi) is the spectral DHR that might be found by
the interpolation of experimental data obtained for a discrete set of incident angles, or
computed using Fresnel’s law and optical constants nλ and kλ.

2.3 Lambertian BRDF

The BRDF for perfectly diffuse (Lambertian) reflection is described by the equation,

fL (λ, θi, ϕi, θr, ϕr) = ρ (λ)

π
, (9)

where ρ(λ) is the spectral hemispherical reflectance that does not depend on incident
angle.

Cartesian coordinates of a random vector ωr can be obtained with the help of the
following procedure. A pseudo-random number generator gives a pair of numbers ux

and uy , uniformly distributed on the segment (0, 1]. Then, they are transformed to
two coordinates of the reflected ray in the Cartesian coordinate system:

ωrx = 2ux − 1, (10)

ωry = 2uy − 1. (11)

This pair is accepted if ω2
rx + ω2

ry < 1 and rejected otherwise (in which case, the
procedure is repeated). The third component of ωr can be found from

ωrz = +
√

1 − ω2
rx − ω2

ry . (12)

Another, slightly slower method to generate the random direction of a diffusely
reflected ray in the local spherical coordinate system is described in the literature
(for instance, see monograph [17]).

2.4 TETRA BRDF Model

The model, which we have named TETRA, is based on ray optics and a micro-facet
model of reflections from isotropic randomly rough surfaces. The TETRA BRDF is
modeled by specular reflections from random tetrahedron pits generated “on the fly”
for each incident ray. In a determinate sense, this model is a three-dimensional (3D)
analog of the well-known Torrance–Sparrow model [18] that provides an analytical
expression for in-plane angular distributions of radiation reflected by an isotropic ran-
domly rough surface. We assume that the triangular base of each tetrahedron lies in
the tangent plane to the surface at the point of ray incidence (see Fig. 1). We also
assume that the base triangle sides have random lengths l1, l2, and l3 with a Gaussian
probability density,
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Fig. 1 Tetrahedral pit with a triangular base in the surface tangent plane

p (l) = 1

σl
√

2π
exp

(
− (l − µl)

2

2σ 2
l

)
, (13)

whereµl = 1 is the mean value (can be considered as a measure) and σl is the standard
deviation.

The triad of random line segments is accepted if their lengths satisfy the following
inequalities and rejected otherwise (the “triangle rule”):

l1 + l2 > l3 and l2 + l3 > l1 and l3 + l1 > l2. (14)

Numerical experiments show the dependence of the BRDF shape on σl . However,
the time of computation grows significantly when σl >> 1. For our discussion, we
select σl = 1.

We studied several variants for arranging the point (x0, y0) for projection of the
lower tetrahedron’s vertex onto the base plane (see Fig. 2): R—a random point uni-
formly distributed inside the triangle; G—the base triangle centroid (center of grav-
ity); V—one of the vertices of the base triangle; C—the circumcircle center, as well as
several others left out of the scope of this article. We found that each variant yields its
own unique family of BRDF curves and increases the overall flexibility of the TETRA
model to simulate scattering from a variety of material types.

After determining the point(x0, y0), the random depth h of the tetrahedral pit and
z0 = −h are found. We used the two-parameter Weibull-probability density defined as

p (h) = β

ηβ
hβ−1 exp

[
−

(
h

η

)β]
, h > 0, (15)

where β > 0 is the shape parameter and η > 0 is the scale parameter of the distri-
bution. We also call η the roughness parameter because the following relationship is
known [19]:
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Fig. 2 Various types of arrangement for the projection of the lower tetrahedron’s vertex onto the plane of
the base triangle: (R—a random point uniformly distributed inside triangle; G—the base triangle centroid
(center of gravity); V—one of vertices of base triangle; C—the circumcircle center)

σ 2 = η2

{


(
1 + 2

β

)
−

[


(
1 + 1

β

)]2
}
, (16)

where σ is the rms roughness (standard deviation of the Weibull distribution); (x)
is the gamma function of the real argument x .

If β = 1, we have the exponential distribution; for β = 2, the Weibull distribution
becomes the Rayleigh distribution. The values of β from the interval 1 ≤ β ≤ 2
produce the physically plausible BRDF shapes. To generate the Weibull-distributed
random variate w, a random variate u drawn from the uniform distribution in the
interval (0, 1] must be transformed [20] to

w = η (− ln u)1/β . (17)

We selected the point of intersection of the incident ray with the base plane as a
random point uniformly distributed inside the base triangle using the algorithm from
Ref. [21]. To ensure the random orientation of the base triangle and isotropy of the
modeled surface, the tetrahedron was rotated through a random angle around a vertical
axis passing through the point of intersection of the incident ray and the base plane.

The incident ray undergoes multiple reflections from the internal facets of the tetra-
hedron, and after each reflection, the radiance of the ray is multiplied by the DHR of the
facet. The algorithm [22] was employed to test whether the intersection of the ray with
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the plane is inside the facet triangle. This random process continues until the ray leaves
the tetrahedral pit, or the radiance becomes less than the prescribed threshold value.

We investigated the TETRA BRDF behavior using a “virtual goniophotometer”
[23,24]: a computer program that enables us to compute the mean radiance of the
radiation reflected by a surface into the small solid angle associated with the direction
(θr, ϕr) and to perform a numerical integration over the complete hemisphere to obtain
the value of DHR. The second method for computation of the DHR is an energy sum-
mation of all rays reflected by the tetrahedral pit to the upper hemisphere. The coinci-
dence of the DHR computed by the two methods is additional evidence of the accuracy
of the calculations. Typical 2D plots (in-plane section) for four variants of the TETRA
BRDFs generated for β = 2, η = 0.1 and three incident angles are shown in Fig. 3.
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Fig. 3 In-plane TETRA-G, TETRA-V, TETRA-R, and TETRA-C BRDFs generated for β = 2, η = 0.1
and incident angles of 0◦, 30◦, and 60◦
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The models produce nearly Gaussian lobes for small η and exhibit such physical
effects as off-specular peaks of reflection and enhanced backscattering for larger η.
The resulting BRDFs were found to adhere to both the energy conservation law and
the reciprocity principle.

2.5 Combined Models of Reflection

The combined model of reflection is the weighted sum of m components:

f (λ, θi, ϕi, θr, ϕr) =
m∑

i=1

Ai fi (λ, θi, ϕi, θr, ϕr), (18)

where Ai is the positive partial weight of i-th component,
∑m

i=1 Ai = 1.
This model can be fitted to experimental data by selection of Ai , the types of lower

vertex projection arrangement, and by varying nλ, kλ, β, and η for each component.

3 Algorithm and Code Features

Currently, the following cavity shapes are implemented: axisymmetric, formed by
rotation of an arbitrary polygonal section around an axis; cylindrical, with an inclined
flat bottom; and a set of rectilinear grooves of polygonal profile. An arbitrary temper-
ature distribution is determined by values in the nodes of a uniform 1D or 2D mesh.
The temperature at the point of a ray-surface interaction is computed using linear or
bi-linear interpolation. A number of different temperature distributions can be assigned
to the same nodes to model several related tasks in a single run. The algorithm allows
modeling of several conditions of observation: along an infinitely thin ray, in parallel
rays, within a divergent or convergent beam, from a cavity to a circular or rectangular
detector, etc., and to compute values of effective emissivity and radiance temperature.

Backward ray tracing, in which a ray originates at the detector surface and propa-
gates toward the cavity, is applied to the computation of radiance due to contributions
accrued by thermal radiation at every point of reflection. For a combined model of
reflection, after every intersection of a ray with the cavity surface, the type of reflec-
tion is determined using the random numbers uniformly distributed on the interval
(0, 1]. For the TETRA BRDF model, the local Cartesian coordinate system is used at
the point of reflection, then the random tetrahedron is generated, and the ray traced
inside the tetrahedron until it escapes. Then we return to the global coordinate system
and the ray tracing continues. The trajectory formed by multiple reflections of a ray
inside the cavity stops when a ray escapes the cavity or the contribution of succeeding
reflections becomes negligible. The local directional spectral effective emissivity of
a cavity having an arbitrary temperature distribution over a radiating surface can be
computed by the following equation:
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εe
(
λ, T, ξ0,ω0

) = 1 − ρ
(
λ, ξ0,ω0

)
N Lλ,bb (λ, T )

N∑
i=1

mi∑
j=1

Lλ,bb
(
λ, Ti j

) j−1∏
k=0

ρ
(
λ, ξ ik,ωik

)
,

(19)

where ωik is the direction of incidence of the i-th ray onto the k-th point of reflection
ξ ik ; ξ0 and ω0 are the viewing point and viewing direction, respectively; ρ is the DHR
(for each surface, the DHR for a set of incident angles θi are computed prior to ray
tracing; during ray tracing, the interpolation is used); T is the reference temperature;
λ is the wavelength; Lλ,bb is the spectral radiance of a perfect blackbody expressed
by Planck’s law; Ti j is the temperature at the point of the j-th reflection of the i-th
trajectory; N is the number of rays traced, and mi is the number of reflections in the
i-th trajectory.

The random component of the computational uncertainty decreases as N−1/2.
Numerical experiments show that, in most cases, it is sufficient to use 107 rays to
reach a random uncertainty of 2×10−5 or less in the effective emissivity.

4 Case Studies

4.1 Local Normal Effective Emissivities of Isothermal Conical and Cylindrical
Cavities

Isothermal conical and cylindrical cavities with diffuse, specular, or specular–diffuse
walls have been intensively studied in early work [25–27]. It is generally assumed that
a specular conical cavity is a very “black” radiator, but a specular cylinder is a poor
approximation of an ideal blackbody. In fact, a coaxial ray launched into the conical
cavity with an apex angle of 30◦ and a wall specular reflectance of 0.1 leaves the cavity
after six consecutive reflections; this ensures an effective emissivity of 0.999999. For
a specular cylindrical cavity, whose flat bottom reflects all coaxial rays back outside
the cavity in one reflection, the effective emissivity is 0.9. The presence of a diffuse
component of reflection leads to a decrease of the effective emissivity for a conical
cavity and an increase for a cylindrical one [4–6]. Their behavior in the case of specular
lobes remains unexamined up to date.

We calculated the distribution of the local normal effective emissivity across the
apertures of the cavities shown in Fig. 4 using the TETRA-G BRDF models depicted
in Fig. 5 (3D representation in spherical coordinates) and Fig. 6 (2D in-plane sections).
Prior to the effective emissivity calculation, the DHR was computed for every BRDF
model for incident angles 0◦ ≤ θi ≤ 90◦ with an increment of 1◦ (see Fig. 7, 1st
family of curves). We assumed that the reflection from a tetrahedron’s facets obeys
the Fresnel law and that nλ = 2.5 and kλ = 2.0.

The results of the calculations are presented in Figs. 8 and 9. For comparison,
we also performed the calculation within the framework of the conventional specu-
lar–diffuse model where the reflectance ρ was chosen to be numerically equal to the
Fresnelian reflectance for normal incidence; ρ and diffusity D (the ratio of diffusely
reflected radiant flux to the total one) are both independent of incident angle. Figures
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Fig. 4 Geometry of (A) isothermal conical, (B) cylindrical, and (C) cylinder-inner-cone cavities; (D) is a
flat radiator with parallel V-grooves

8 and 9 exhibit significant differences in the distributions obtained for the two models.
None of the dependencies computed for the TETRA model can be approximated by
the dependencies computed for the specular–diffuse model with diffusity D. Calcu-
lations (Fig. 9) of the local normal effective emissivity of a cylindrical cavity using
the TETRA model also predict substantively greater non-uniformity over the cavity
aperture than that for the specular–diffuse model.

4.2 Isothermal Cylindro-inner-conical Cavity

We computed the dependence of the normal effective emissivity, averaged over the
aperture of a cylindro-inner-conical cavity (see Fig. 4c), on the roughness parameter
η; the TETRA-G BRDF model with β = 2 was used for the cavity’s internal surface.
The computations were also performed against diffusity D for the specular–diffuse
model of reflection having the same DHR as that of the TETRA-G model at normal
incidence. Both dependencies are depicted in Fig. 10. For the specular–diffuse model,
the effective emissivity curve has a minimum of 0.9946 at D ≈ 0.6. For the TETRA-G
model, the effective emissivity decreases sharply for small η. This shows that the use
of a purely specular model for a glossy black coating [28] can be a source of signif-
icant uncertainty. For η > 0.4, the backscattering component of reflectance appears
and grows, which leads to a further decrease of the effective emissivity.
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Fig. 5 3D plots of TETRA-G BRDF in spherical coordinates for three incident angles; β = 2, nλ =
2.5, kλ = 2.0, λ = 10.6µm. All BRDF maxima are normalized to unity
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cavity computed for the TETRA and specular–diffuse models of reflection
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eter η (TETRA BRDF model) and on diffusity D (specular–diffuse model)

4.3 Non-isothermal V-Grooved Radiator

We considered blackbody radiators in the form of a flat plate with rectilinear grooves
of a triangular profile with a 30◦ span angle (see Fig. 4d), having a base temperature of
500 K that decreases linearly by 0, 1, and 2 K toward the groove edges. The Schlick’s
approximation [29] of the Fresnel sequations,
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Fig. 11 Distributions of the difference between true and radiance temperature at 1.5µm along the depth
of the V-grooves for temperature drops of 0, 1, and 2 K

ρ (λ, θi) ≈ ρ (λ, 0)+ (1 − cos θi)
5 (1 − ρ (λ, 0)) (20)

with ρ(0) = 0.1 was adopted for tetrahedral facets in the TETRA model of a black
coating. The 2nd family of curves in Fig. 7 shows the dependence of the DHR on
incident angle for various roughness parameters η. We computed the distributions
of the local normal spectral effective emissivity εe,n (λ0, x, T ) at λ0 = 1.5µm and
T = 500 K, and then recomputed them into the radiance temperature using Eq. 2.

The results of these calculations are presented in Fig. 11. For the isothermal case,
the deviation of the radiance temperature of the radiator from its thermodynamic tem-
perature is determined only by its effective emissivity. The normal effective emissivity
of a purely specular 30◦-wedge is very close to unity and the radiance temperature is
coincident with the thermodynamic one. The growth of η leads to a decrease of the
effective emissivity and to an increase in T − TS. The temperature drop toward the
groove edge leads to an additional decrease of the effective emissivity and an increase
in T − TS. The joint action of these two factors (temperature drop and roughness)
produces a difference T − TS greater than the value of the actual temperature drop
across the groove. Usually, the pyrometer “views” many pitches of V-grooves and
their radiation should be averaged over the pyrometer’s field-of-view. The result of
averaging depends on the position of the center of the visible area.
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5 Conclusion

We briefly described an algorithm for Monte Carlo modeling of the radiative char-
acteristics of non-diffuse blackbody cavities. This algorithm is used to compute the
effective emissivity and radiance temperature of isothermal and non-isothermal cav-
ities for various viewing conditions. The TETRA BRDF model of reflection from
random rough surfaces can be fitted with measured BRDFs and applied to solve vari-
ous problems of radiative heat transfer. The numerical examples presented confirm the
importance of modeling with realistic BRDFs and illustrate the broad computational
capabilities of the algorithm and code that have been developed.

Acknowledgment This work was performed under the sponsorship of the U.S. Department of
Commerce, National Institute of Standards and Technology.

Nomenclature
Symbols
Ai Partial weight of the i-th BRDF in the composite BRDF
c2 1.438769×10−2 (m K), second constant in Planck’s law
f Bi-directional reflectance distribution function (BRDF, sr−1)

h Depth of the tetrahedral pit (m)
kλ Spectral coefficient of extinction
li Length of the i-th side of the base triangle (m)
nλ Spectral refractive index
n Normal vector to the surface at the point of reflection
N Number of rays traced
p Probability density function
T Temperature (K)
TS Radiance temperature (K)
u Random variate uniformly distributed on (0, 1]
w Random variate Weibull-distributed on [0, ∞)
Greek Symbols
β Shape parameter of the Weibull distribution
δ Dirac delta-function
ε Emissivity
η Scale parameter of the Weibull distribution (roughness parameter)
θ Polar angle of the spherical coordinate system (◦)
λ Wavelength (µm)
φ Azimuthal angle of the spherical coordinate system (◦)
ξ Unit vector that indicates the position
ρ Directional-hemispherical reflectance (DHR)
ψ Vertex angle of the conical or cylindro-inner-conical cavity (◦)
ω Unit vector that indicates the direction
Subscripts
bb Blackbody
e Effective
i Incidence
r Reflection
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